

Bachelor of Science (B.Sc.) Semester-II Examination

PHYSICS

(Oscillations, Kinetic Theory of Gases & Thermodynamics)

Compulsory Paper—I

Time—Three Hours] [Maximum Marks—50

- N.B. :—** (1) ALL questions are compulsory.
 (2) Draw neat and labelled diagrams wherever necessary.

EITHER

1. (A) (i) What are damped vibrations ?
 (ii) Obtain the differential equation of motion for damped harmonic oscillator and obtain an equation for displacement. 5
- (B) (i) Using the general solution of equation of damped harmonic motion discuss the case of :
 (a) Dead beat motion
 (b) Critically damped motion. 3
- (ii) A particle of mass 5 kg lies in a potential field $V = 8x^2 + 200$ J/kg. Calculate its time period. 2

- (C) Show that the resultant of two SHMs at right angle to each other and having equal periods and amplitudes but phase difference is 90° is a circle. $2\frac{1}{2}$
- (D) Obtain an expression for the velocity and acceleration of the particle performing SHM. $2\frac{1}{2}$
- (E) A lift is ascending at acceleration of 3 m/s^2 . What is the period of oscillation of simple pendulum of length one meter suspended in the lift ? $2\frac{1}{2}$
- (F) Define simple harmonic motion. Obtain differential equation for it. $2\frac{1}{2}$

EITHER

2. (A) (i) What is meant by mean free path ? Derive an expression for mean free path of gas molecules. 3
- (ii) Define the terms :
 (a) Collision cross-section
 (b) Frequency of collision. 2
- (B) (i) Obtain the differential equation for forced harmonic oscillator. Solve the above differential equation to obtain steady state solution. 3
- (ii) A mass of $25 \times 10^{-2} \text{ kg}$ is suspended from the lower end of the vertical spring having force constant 25 N/m . What should be the damping constant so that the motion is critically damped ? 2

2. (C) Explain Amplitude Resonance in forced oscillations. 2½
- (D) Derive an equation for power dissipated by forced oscillator. 2½
- (E) State and prove the law of equipartition of energy. 2½
- (F) The mean free path of N_2 molecules at $0^\circ C$ at 1 atm. pressure is 8×10^{-8} m. If there are 2.7×10^{25} molecules/m³ at this temperature and pressure, find the molecular diameter. 2½

EITHER

3. (A) Explain the Carnot's reversible cycle. Deduce an expression for its efficiency. 5
- (B) (i) State and prove Carnot's theorem. 3
- (ii) If efficiency of Carnot's engine with sink temp $27^\circ C$ is 25% find the source temp. 2

OR

- (C) Derive an expression for the coefficient for thermal conductivity of gas. 2½
- (D) Calculate the values of Van der Waal's constants 'a' and 'b' with following data :
- $T_C = 132^\circ K$, $P_C = 37.2$ atm.

$$R = 8.314 \text{ J/mol}^\circ K, 1 \text{ atm} = 1.013 \times 10^5 \text{ N/m}^2.$$

- (E) Explain the volume correction in Van der Waal's equation of state of gases. 2½
- (F) State the Van der Waal's equation of state and give its limitations. 2½

EITHER

4. (A) (i) Describe the porous plug experiment with diagram. 2
- (ii) What is Joule-Thomson effect ? Show that enthalpy remains constant in porous plug experiment. 3
- (B) (i) Obtain an equation for Joule-Thomson coefficient. 3
- (ii) Calculate change in temperature of gas when it suffers Joule-Thomson expansion at 300°K, the pressure difference on two sides of the plug being 5 atm.

$$a = 0.303 \text{ Nm}^4/\text{mole}^2, b = 4.27 \times 10^{-3} \text{ m}^3/\text{mole}$$

$$R = 8.31 \text{ J/mole } ^\circ\text{K}, C_p = 8.75 \text{ Cal/mole } ^\circ\text{K}, J = 4.18 \text{ J/Cal.}$$

2

OR

- (C) Derive Claussius Clapeyron's equation from Maxwell's thermodynamic relation. 2½
- (D) Explain the process of liquefaction of helium gas with neat diagram. 2½
- (E) What is entropy ? Explain the change in entropy in reversible and irreversible process. 2½

(F) Calculate the change in vapour pressure of water when its boiling point changes from 100°C to 110°C .
Given : Volume of 1 gm of water = 1640 cm^3 and latent heat of vapourization = 540 Cal/gm and $1 \text{ Cal} = 4.2 \text{ J}$. $2\frac{1}{2}$

5. Attempt any TEN questions :

- (i) What are Lissajous figures ?
- (ii) Draw the resultant of two SHMs acting perpendicular to each other of same frequencies with diff. amplitude when $\phi = \pi/4$.
- (iii) At what distance the kinetic energy and potential energy of Simple Harmonic Oscillator is equal ?
- (iv) What is quality factor ?
- (v) What is velocity resonance ?
- (vi) Explain the term degrees of freedom.
- (vii) Define intensive and extensive variables of the system.
- (viii) State zeroth law of thermodynamics.
- (ix) Find the coefficient of viscosity of Nitrogen at N.T.P. if $\lambda = 9.98 \times 10^{-8} \text{ m}$, $\tau = 455 \text{ m/s}$ and $\rho = 1.25 \text{ kg/m}^3$.
- (x) What is throttling process ?
- (xi) Calculate the inversion temperature of gas if $a = 0.0341 \text{ atm lit}^2/\text{mole}^2$, $b = 0.0237 \text{ lit/mole}$, $R = 8.31 \text{ J/mole }^{\circ}\text{K}$.
- (xii) Define the term Reversible Process. $1 \times 10 = 10$